85 research outputs found

    Ventrolateral Origin of Each Cycle of Rhythmic Activity Generated by the Spinal Cord of the Chick Embryo

    Get PDF
    BACKGROUND: The mechanisms responsible for generating rhythmic motor activity in the developing spinal cord of the chick embryo are poorly understood. Here we investigate whether the activity of motoneurons occurs before other neuronal populations at the beginning of each cycle of rhythmic discharge. METHODOLOGY/PRINCIPAL FINDINGS: The spatiotemporal organization of neural activity in transverse slices of the lumbosacral cord of the chick embryo (E8-E11) was investigated using intrinsic and voltage-sensitive dye (VSD) imaging. VSD signals accompanying episodes of activity comprised a rhythmic decrease in light transmission that corresponded to each cycle of electrical activity recorded from the ipsilateral ventral root. The rhythmic signals were widely synchronized across the cord face, and the largest signal amplitude was in the ventrolateral region where motoneurons are located. In unstained slices we recorded two classes of intrinsic signal. In the first, an episode of rhythmic activity was accompanied by a slow decrease in light transmission that peaked in the dorsal horn and decayed dorsoventrally. Superimposed on this signal was a much smaller rhythmic increase in transmission that was coincident with each cycle of discharge and whose amplitude and spatial distribution was similar to that of the VSD signals. At the onset of a spontaneously occurring episode and each subsequent cycle, both the intrinsic and VSD signals originated within the lateral motor column and spread medially and then dorsally. By contrast, following a dorsal root stimulus, the optical signals originated within the dorsal horn and traveled ventrally to reach the lateral motor column. CONCLUSIONS/SIGNIFICANCE: These findings suggest that motoneuron activity contributes to the initiation of each cycle of rhythmic activity, and that motoneuron and/or R-interneuron synapses are a plausible site for the activity-dependent synaptic depression that modeling studies have identified as a critical mechanism for cycling within an episode

    Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity

    Get PDF
    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli

    Countercurrent diffusion in the renal cortex of the rabbit.

    No full text

    Rapid-freezing transmural cardiac biopsy drill

    No full text
    • …
    corecore